Category
Problem Set
Status
Corner Problem in Product Sets
Suppose $G$ is a finite group, and let $A \subset G \times G$ be a subset of density $\alpha$. Are there $\gg_\alpha |G|^3$ triples $x, y, g$ such tha...
Multidimensional Szemerédi Theorem Bounds
Find reasonable bounds for instances of the multidimensional Szemerédi theorem....
Large Sieve and Quadratic Sets
Suppose that a large sieve process leaves a set of quadratic size. Is that set quadratic?...
Small Sieve Maximal Sets
Suppose that a small sieve process leaves a set of maximal size. What is the structure of that set?...
Large Cosets in Iterated Sumsets
Suppose that $A \subset \mathbb{F}_2^n$ has density $\alpha$. Does $10A$ contain a coset of some subspace of dimension at least $n - O(\log(1/\alpha))...
Largest Coset in 2A
Suppose that $A \subset \mathbb{F}_2^n$ has density $\alpha$. What is the largest size of coset guaranteed to be contained in $2A$?...
Additive Complements and Cosets
Suppose that $A \subset \mathbb{F}_2^n$ has an additive complement of size $K$. Does $2A$ contain a coset of codimension $O_K(1)$?...
Partitions and Large Cosets
Suppose that $\mathbb{F}_2^n$ is partitioned into sets $A_1, \dots, A_K$. Does $2A_i$ contain a coset of codimension $O_K(1)$ for some $i$?...
Gaussian Measure and Convex Sets
Let $K \subset \mathbb{R}^N$ be a balanced compact set with normalized Gaussian measure $\gamma_\infty(K) \geq 0.99$. Does $10K$ contain a compact con...
Gowers Box Norms over Finite Fields
Let $p$ be an odd prime and suppose $f : \mathbb{F}_p^n \times \mathbb{F}_p^n \to \mathbb{C}$ is bounded pointwise by 1. Suppose $\mathbb{E}_h \|\Delt...
Inverse Theorem for Gowers Norms
Determine bounds for the inverse theorem for Gowers norms....
Φ(G) and Φ'(G) Coincidence
Do $\Phi(G)$ and $\Phi'(G)$ coincide?...
Sumsets Containing Composites
Suppose $A, B \subset \{1, \dots, N\}$ both have size $N^{0.49}$. Does $A + B$ contain a composite number?...
Sums of Smooth Numbers
Is every $n \leq N$ the sum of two integers, all of whose prime factors are at most $N^\varepsilon$?...
Sumsets of Perfect Squares
Is there an absolute constant $c > 0$ such that if $A \subset \mathbb{N}$ is a set of squares of size at least 2, then $|A + A| \geq |A|^{1+c}$?...
Covering Squares with Sumsets
Suppose $A + A$ contains the first $n$ squares. Is $|A| \geq n^{1-o(1)}$?...
Products of Primes Modulo p
Let $p$ be a large prime, and let $A$ be the set of all primes less than $p$. Is every $x \in \{1, \dots, p-1\}$ congruent to some product $a_1a_2$ mo...
Multiplicatively Closed Set Density
Let $A$ be the smallest set containing 2 and 3, and closed under the operation $a_1a_2 - 1$ (if $a_1, a_2 \in A$, then $a_1a_2 - 1 \in A$). Does $A$ h...
Primes with p-2 Having Odd Omega
Do there exist infinitely many primes $p$ for which $p-2$ has an odd number of prime factors (counting multiplicity)?...
Difference Sets Containing Squares
Is there $c > 0$ such that whenever $A \subset [N]$ has size $N^{1-c}$, the difference set $A - A$ contains a nonzero square?...
Gaps Between Sums of Two Squares
Is there always a sum of two squares between $X - \frac{1}{10}X^{1/4}$ and $X$?...
Waring's Problem Over Finite Fields
Determine bounds for Waring's problem over finite fields....
Cubic Curves in F_p^2
Suppose $A \subset \mathbb{F}_p^2$ is a set meeting every line in at most 2 points. Is it true that all except $o(p)$ points of $A$ lie on a cubic cur...
Collinear Triples and Cubic Curves
Fix $k$. Let $A \subset \mathbb{R}^2$ be a set of $n$ points with no more than $k$ on any line. Suppose at least $\delta n^2$ pairs $(x, y) \in A \tim...
Erdős-Szekeres with Visibility
Fix integers $k, \ell$. Given $n \geq n_0(k, \ell)$ points in $\mathbb{R}^2$, is there either a line containing $k$ of them, or $\ell$ of them that ar...
Collinear 4-tuples Force Collinear 5-tuples
Suppose $A \subset \mathbb{R}^2$ is a set of size $n$ with $cn^2$ collinear 4-tuples. Does it contain 5 points on a line?...
No Three in Line in [N]^2
What is the largest subset of the grid $[N]^2$ with no three points on a line? In particular, for $N$ sufficiently large, is it impossible to have a s...
Smooth Surfaces Intersecting 2-planes
Let $\Gamma$ be a smooth codimension 2 surface in $\mathbb{R}^n$. Must $\Gamma$ intersect some 2-dimensional plane in 5 points, if $n$ is sufficiently...
No 5 Points on 2-plane in [N]^d
What is the largest subset of $[N]^d$ with no 5 points on a 2-plane?...
Balanced Ham Sandwich Line
Let $X \subset \mathbb{R}^2$ be a set of $n$ points. Does there exist a line $\ell$ through at least two points of $X$ such that the numbers of points...
Sparse Hitting Set for Rectangles
Let $A$ be a set of $n$ points in the plane. Can one select $A' \subset A$ of size $n/2$ such that any axis-parallel rectangle containing 1000 points ...
Small Triangles in the Unit Disc
Given $n$ points in the unit disc, must there be a triangle of area at most $n^{-2+o(1)}$ determined by them?...
Axis-Parallel Rectangles in Dense Sets
Suppose $A$ is an open subset of $[0, 1]^2$ with measure $\alpha$. Are there four points in $A$ determining an axis-parallel rectangle with area $\geq...
Equidistribution of Integer Multiples
Let $c > 0$ and let $A$ be a set of $n$ distinct integers. Does there exist $\theta$ such that no interval of length $\frac{1}{n}$ in $\mathbb{R}/\mat...
Random Permutations Fixing k-Sets
Let $p(k)$ be the limit as $n \to \infty$ of the probability that a random permutation on $[n]$ preserves some set of size $k$. Is $p(k)$ a decreasing...
Comparable Elements in Integer Lattices
Consider a set $S \subset [N]^3$ with the property that any two distinct elements $s, s'$ of $S$ are comparable (in the coordinatewise partial order)....
Stable Density on Subspaces
Let $A \subset \mathbb{F}_2^n$. If $V$ is a subspace, write $\alpha(V)$ for the density of $A$ on $V$. Is there some $V$ of moderately small codimensi...
Almost Invariant Sets Under Affine Maps
Suppose $A \subset \mathbb{Z}/p\mathbb{Z}$ has density $\frac{1}{2}$. Under what conditions on $K$ can $A$ be almost invariant under all maps $\phi(x)...
Trace Reconstruction
Given a string $x \in \{0, 1\}^n$, let $\tilde{x}$ be obtained by deleting bits independently at random with probability $\frac{1}{2}$. How many indep...
Irreducibility of Random {0,1} Polynomials
Is a random polynomial with coefficients in $\{0, 1\}$ and nonzero constant term almost surely irreducible?...
Affine Copy of Geometric Progression
Let $A \subset \mathbb{R}$ be a set of positive measure. Does $A$ contain an affine copy of $\{1, \frac{1}{2}, \frac{1}{4}, \dots\}$?...
Sidon Sets vs Sets of Analyticity
Is every set $\Lambda \subset \mathbb{Z}$ either a Sidon set, or a set of analyticity?...
N Queens Problem Asymptotics
In how many ways (asymptotically) $Q(n)$ may $n$ non-attacking queens be placed on an $n \times n$ chessboard?...
Bounds for Birch's Theorem
Let $d \geq 3$ be odd. Give bounds on $\nu(d)$ such that if $n > \nu(d)$ then any homogeneous polynomial $F(\mathbf{x}) \in \mathbb{Z}[x_1, \dots, x_n...
Solutions to Polynomial Equations in Dense Sets
Finding a single solution to $F(x_1, \dots, x_n) = C$ can be very difficult. What conditions on $A$ ensure that the number of solutions in $A$ is roug...
Residually Finite Groups
Is every group well-approximated by finite groups?...
Rado's Boundedness Conjecture
Suppose $a_1, \dots, a_k$ are integers which do not satisfy Rado's condition. Is $c(a_1, \dots, a_k)$ bounded in terms of $k$ only?...
Monochromatic x+y and xy
If $\{1, \dots, N\}$ is $r$-coloured, then for $N \geq N_0(r)$ there exist integers $x, y \geq 3$ such that $x+y$ and $xy$ have the same colour. Find ...
Affine Translates of {0,1,3}
If $A$ is a set of $n$ integers, what is the maximum number of affine translates of the set $\{0, 1, 3\}$ that $A$ can contain?...
Restricted Sumsets in Partitions
For which values of $k$ is the following true: whenever we partition $[N] = A_1 \cup \dots \cup A_k$, we have $|\bigcup_{i=1}^k (A_i \hat{+} A_i)| \ge...