Unsolved Problems

Showing 51-76 of 76 problems (Page 2 of 2)

GEO-028
Open

Ehrhart's Volume Conjecture

Does a convex body in $\mathbb{R}^n$ with one interior lattice point at its center of mass have volume at most $(n+1)^n/n!$?...

L4
Geometry
389
27
GEO-029
Open

Borsuk's Conjecture

Can every bounded set in $\mathbb{R}^n$ be partitioned into $n+1$ sets of smaller diameter?...

L4
Geometry
523
39
GEO-030
Open

The Kissing Number Problem

What is the maximum number of non-overlapping unit spheres that can touch a central unit sphere in $n$ dimensions?...

L4
Geometry
612
46
GEO-031
Open

Ulam's Packing Conjecture

Is the sphere the worst-packing convex solid?...

L4
Geometry
445
32
GEO-032
Open

Sphere Packing in High Dimensions

What is the densest packing of unit spheres in dimensions other than 1, 2, 3, 8, and 24?...

L5
Geometry
734
58
GEO-033
Open

Erdős-Ulam Problem

Is there a dense set of points in the plane with all pairwise distances rational?...

L4
Geometry
478
36
GEOM-007
Open

Kakeya Conjecture

Must a Kakeya set in $\mathbb{R}^n$ have Hausdorff and Minkowski dimension $n$?...

L5
Geometry
289
23
GEOM-008
Open

Illumination Problem

Can every convex body in $\mathbb{R}^n$ be illuminated by $2^n$ light sources?...

L4
Geometry
234
19
GEOM-009
Open

Yang-Mills Existence and Mass Gap

Does Yang-Mills theory exist mathematically and exhibit a mass gap in 4D?...

L5
Geometry
567
47
GEOM-010
Open

Kissing Number Problem

What is the kissing number (maximum number of non-overlapping unit spheres that can touch a central unit sphere) in dimensions other than 1, 2, 3, 4, ...

L4
Geometry
534
41
GEOM-013
Open

Tammes Problem

For n > 14 points (except n=24), what is the maximum minimum distance between points on a unit sphere?...

L3
Geometry
245
19
GEOM-014
Open

Carathéodory Conjecture

Does every convex, closed, twice-differentiable surface in 3D Euclidean space have at least two umbilical points?...

L4
Geometry
312
24
GEOM-015
Open

Cartan-Hadamard Conjecture

Does the isoperimetric inequality extend to Cartan-Hadamard manifolds (complete simply-connected manifolds of nonpositive curvature)?...

L4
Geometry
267
20
GEOM-016
Open

Chern's Conjecture (Affine Geometry)

Does the Euler characteristic of a compact affine manifold vanish?...

L4
Geometry
189
15
GEOM-017
Open

Hopf Conjectures

What are the relationships between curvature and Euler characteristic for higher-dimensional Riemannian manifolds?...

L5
Geometry
234
18
GEOM-018
Open

Yau's Conjecture on First Eigenvalue

Is the first eigenvalue of the Laplace-Beltrami operator on an embedded minimal hypersurface of $S^{n+1}$ equal to $n$?...

L5
Geometry
178
14
GEOM-019
Open

Hadwiger Conjecture (Covering)

Can every $n$-dimensional convex body be covered by at most $2^n$ smaller positively homothetic copies?...

L4
Geometry
298
23
GEOM-020
Open

Happy Ending Problem

What is the minimum number $g(n)$ of points in general position in the plane guaranteeing a convex $n$-gon?...

L4
Geometry
345
27
GEOM-021
Open

Heilbronn Triangle Problem

What configuration of $n$ points in the unit square maximizes the area of the smallest triangle they determine?...

L4
Geometry
223
17
GEOM-022
Open

Kalai's 3^d Conjecture

Does every centrally symmetric $d$-dimensional polytope have at least $3^d$ faces?...

L4
Geometry
189
15
GEOM-023
Open

Orchard-Planting Problem

What is the maximum number of 3-point lines attainable by a configuration of $n$ points in the plane?...

L3
Geometry
234
18
GEOM-024
Open

Unit Distance Problem

How many pairs of points at unit distance can be determined by $n$ points in the Euclidean plane?...

L4
Geometry
267
21
GEOM-025
Open

Bellman's Lost-in-a-Forest Problem

What is the shortest path that guarantees reaching the boundary of a given shape, starting from an unknown point with unknown orientation?...

L3
Geometry
423
33
GEOM-026
Open

Borromean Rings Question

Can three unknotted space curves (not all circles) be arranged as Borromean rings?...

L3
Geometry
312
24
GEOM-027
Open

Danzer's Problem

Do Danzer sets of bounded density or bounded separation exist?...

L4
Geometry
201
16
GEOM-001
Open

Sphere Packing Problem Higher Dimensions

What is the optimal sphere packing density in dimensions >3?...

L5
Geometry
298
23