Unsolved Problems

Showing 1-50 of 71 problems (Page 1 of 2)

PreviousNext
COMB-001
Open

The Hadwiger-Nelson Problem

What is the minimum number of colors needed to color the points of the plane such that no two points at distance 1 have the same color?...

L3
Combinatorics
421
28
COMB-003
Open

Ramsey Number R(5,5)

What is the exact value of $R(5,5)$, the smallest number $n$ such that any 2-coloring of the edges of $K_n$ contains a monochromatic $K_5$?...

L3
Combinatorics
543
32
COMB-004
Open

The Lonely Runner Conjecture

For any $n$ runners on a circular track with distinct constant speeds, each runner is "lonely" (distance at least $1/n$ from all others) at some time....

L3
Combinatorics
234
14
COMB-005
Open

Frankl's Union-Closed Sets Conjecture

For every finite union-closed family of sets (other than the empty family), there exists an element that belongs to at least half of the sets....

L3
Combinatorics
389
21
GREEN-001
Open

Large Sum-Free Sets

Let $A$ be a set of $n$ positive integers. Does $A$ contain a sum-free set of size at least $n/3 + \Omega(n)$, where $\Omega(n) \to \infty$ as $n \to ...

L2
Combinatorics
145
8
GREEN-002
Open

Restricted Sumset Problem

Let $A \subset \mathbb{Z}$ be a set of $n$ integers. Is there a subset $S \subset A$ of size $(\log n)^{100}$ such that $S \hat{+} S$ is disjoint from...

L2
Combinatorics
123
7
GREEN-008
Open

Almost Sum-Free Sets

Suppose that $A \subset [N]$ has no more than $\varepsilon N^2$ solutions to $x + y = z$. Can one remove $\varepsilon' N$ elements to leave a sum-free...

L2
Combinatorics
109
6
GREEN-006
Open

Sum-Free Subsets of [N]^d

Fix an integer $d$. What is the largest sum-free subset of $[N]^d$?...

L1
Combinatorics
118
7
GREEN-009
Open

Progressions in Subsets of Z/NZ

Is $r_5(N) \ll N(\log N)^{-c}$? Is $r_4(\mathbb{F}_5^n) \ll N^{1-c}$ where $N = 5^n$?...

L2
Combinatorics
142
8
GREEN-010
Open

Roth's Theorem with Random Common Differences

Let $S \subset \mathbb{N}$ be random. Under what conditions is Roth's theorem for progressions of length 3 true with common differences in $S$?...

L1
Combinatorics
126
7
GREEN-012
Open

Tuples in Dense Sets

Let $G$ be an abelian group of size $N$, and suppose that $A \subset G$ has density $\alpha$. Are there at least $\alpha^{15}N^{10}$ tuples $(x_1, \ld...

L2
Combinatorics
108
6
GREEN-013
Open

4-term APs in Fourier Uniform Sets

Suppose that $A \subset \mathbb{Z}/N\mathbb{Z}$ has density $\alpha$ and is Fourier uniform (all Fourier coefficients of $1_A - \alpha$ are $o(N)$). D...

L2
Combinatorics
115
7
GREEN-015
Open

Lipschitz AP-Free Graphs

Does there exist a Lipschitz function $f : \mathbb{N} \to \mathbb{Z}$ whose graph $\Gamma = \{(n, f(n)) : n \in \mathbb{Z}\} \subset \mathbb{Z}^2$ is ...

L1
Combinatorics
121
7
GREEN-016
Open

Linear Equation x + 3y = 2z + 2w

What is the largest subset of $[N]$ with no solution to $x + 3y = 2z + 2w$ in distinct integers $x, y, z, w$?...

L1
Combinatorics
98
5
GREEN-017
Open

Progressions in F_3^n with Boolean Common Differences

Suppose that $A \subset \mathbb{F}_3^n$ is a set of density $\alpha$. Under what conditions on $\alpha$ is $A$ guaranteed to contain a 3-term progress...

L2
Combinatorics
104
6
GREEN-018
Open

Corner Problem in Product Sets

Suppose $G$ is a finite group, and let $A \subset G \times G$ be a subset of density $\alpha$. Are there $\gg_\alpha |G|^3$ triples $x, y, g$ such tha...

L1
Combinatorics
110
6
GREEN-020
Open

Multidimensional Szemerédi Theorem Bounds

Find reasonable bounds for instances of the multidimensional Szemerédi theorem....

L2
Combinatorics
127
7
GREEN-023
Open

Large Cosets in Iterated Sumsets

Suppose that $A \subset \mathbb{F}_2^n$ has density $\alpha$. Does $10A$ contain a coset of some subspace of dimension at least $n - O(\log(1/\alpha))...

L2
Combinatorics
93
5
GREEN-024
Open

Largest Coset in 2A

Suppose that $A \subset \mathbb{F}_2^n$ has density $\alpha$. What is the largest size of coset guaranteed to be contained in $2A$?...

L1
Combinatorics
88
4
GREEN-025
Open

Additive Complements and Cosets

Suppose that $A \subset \mathbb{F}_2^n$ has an additive complement of size $K$. Does $2A$ contain a coset of codimension $O_K(1)$?...

L2
Combinatorics
91
5
GREEN-026
Open

Partitions and Large Cosets

Suppose that $\mathbb{F}_2^n$ is partitioned into sets $A_1, \dots, A_K$. Does $2A_i$ contain a coset of codimension $O_K(1)$ for some $i$?...

L2
Combinatorics
86
5
GREEN-028
Open

Gowers Box Norms over Finite Fields

Let $p$ be an odd prime and suppose $f : \mathbb{F}_p^n \times \mathbb{F}_p^n \to \mathbb{C}$ is bounded pointwise by 1. Suppose $\mathbb{E}_h \|\Delt...

L2
Combinatorics
84
5
GREEN-029
Open

Inverse Theorem for Gowers Norms

Determine bounds for the inverse theorem for Gowers norms....

L2
Combinatorics
95
6
GREEN-053
Open

Random Permutations Fixing k-Sets

Let $p(k)$ be the limit as $n \to \infty$ of the probability that a random permutation on $[n]$ preserves some set of size $k$. Is $p(k)$ a decreasing...

L2
Combinatorics
75
4
GREEN-054
Open

Comparable Elements in Integer Lattices

Consider a set $S \subset [N]^3$ with the property that any two distinct elements $s, s'$ of $S$ are comparable (in the coordinatewise partial order)....

L1
Combinatorics
71
3
GREEN-055
Open

Stable Density on Subspaces

Let $A \subset \mathbb{F}_2^n$. If $V$ is a subspace, write $\alpha(V)$ for the density of $A$ on $V$. Is there some $V$ of moderately small codimensi...

L2
Combinatorics
77
4
GREEN-056
Open

Almost Invariant Sets Under Affine Maps

Suppose $A \subset \mathbb{Z}/p\mathbb{Z}$ has density $\frac{1}{2}$. Under what conditions on $K$ can $A$ be almost invariant under all maps $\phi(x)...

L2
Combinatorics
69
3
GREEN-057
Open

Trace Reconstruction

Given a string $x \in \{0, 1\}^n$, let $\tilde{x}$ be obtained by deleting bits independently at random with probability $\frac{1}{2}$. How many indep...

L2
Combinatorics
82
5
GREEN-061
Open

N Queens Problem Asymptotics

In how many ways (asymptotically) $Q(n)$ may $n$ non-attacking queens be placed on an $n \times n$ chessboard?...

L1
Combinatorics
94
6
GREEN-065
Open

Rado's Boundedness Conjecture

Suppose $a_1, \dots, a_k$ are integers which do not satisfy Rado's condition. Is $c(a_1, \dots, a_k)$ bounded in terms of $k$ only?...

L2
Combinatorics
72
4
GREEN-066
Open

Monochromatic x+y and xy

If $\{1, \dots, N\}$ is $r$-coloured, then for $N \geq N_0(r)$ there exist integers $x, y \geq 3$ such that $x+y$ and $xy$ have the same colour. Find ...

L1
Combinatorics
78
4
GREEN-067
Open

Affine Translates of {0,1,3}

If $A$ is a set of $n$ integers, what is the maximum number of affine translates of the set $\{0, 1, 3\}$ that $A$ can contain?...

L1
Combinatorics
74
3
GREEN-068
Open

Restricted Sumsets in Partitions

For which values of $k$ is the following true: whenever we partition $[N] = A_1 \cup \dots \cup A_k$, we have $|\bigcup_{i=1}^k (A_i \hat{+} A_i)| \ge...

L2
Combinatorics
68
3
GREEN-069
Open

Sum of Cubes in F_3^n

Let $A_1, \dots, A_{100}$ be "cubes" in $\mathbb{F}_3^n$ (images of $\{0, 1\}^n$ under linear automorphisms). Is $A_1 + \dots + A_{100} = \mathbb{F}_3...

L2
Combinatorics
71
4
GREEN-070
Open

Sets with No Unique Sum Representations

What is the size of the smallest set $A \subset \mathbb{Z}/p\mathbb{Z}$ (with at least two elements) for which no element in the sumset $A + A$ has a ...

L2
Combinatorics
76
4
GREEN-071
Open

Uniform Random Variables with Uniform Sum

Suppose $X, Y$ are finitely-supported independent random variables taking integer values such that $X + Y$ is uniformly distributed on its range. Are ...

L1
Combinatorics
70
3
GREEN-073
Open

Structured Subsets with Bounded Doubling

Given a set $A \subset \mathbb{Z}$ with $D(A) \leq K$, find a large structured subset $A'$ which "obviously" has $D(A') \leq K + \varepsilon$....

L2
Combinatorics
68
3
GREEN-074
Open

Sidon Set Size Bounds

Write $F(N)$ for the largest Sidon subset of $[N]$. Improve, at least for infinitely many $N$, the bounds $N^{1/2} + O(1) \leq F(N) \leq N^{1/2} + N^{...

L2
Combinatorics
89
5
GREEN-075
Open

Large Gaps in Dilates

Let $p$ be a prime and let $A \subset \mathbb{Z}/p\mathbb{Z}$ be a set of size $\sqrt{p}$. Is there a dilate of $A$ with a gap of length $100\sqrt{p}$...

L1
Combinatorics
72
4
GREEN-076
Open

Optimal Sidon Bases

Are there infinitely many $q$ for which there is a set $A \subset \mathbb{Z}/q\mathbb{Z}$ with $|A| = (\sqrt{2} + o(1))q^{1/2}$ and $A + A = \mathbb{Z...

L2
Combinatorics
75
4
GREEN-077
Open

Structure of Sets with Bounded Representation

Suppose $A \subset [N]$ has size $\geq c\sqrt{N}$ and representation function $r_A(n) \leq r$ for all $n$. What can be said about the structure of $A$...

L1
Combinatorics
70
3
GREEN-079
Open

Disjoint Sumsets Construction

For arbitrarily large $n$, does there exist an abelian group $H$ with $|H| = n^{2+o(1)}$ and subsets $A_1, \dots, A_n, B_1, \dots, B_n$ satisfying $|A...

L2
Combinatorics
69
3
GREEN-080
Open

Cap Sets in F_7^n

What is the largest subset $A \subset \mathbb{F}_7^n$ for which $A - A$ intersects $\{-1, 0, 1\}^n$ only at 0?...

L2
Combinatorics
73
4
GREEN-081
Open

Covering by Random Translates

If $A \subset \mathbb{Z}/p\mathbb{Z}$ is random with $|A| = \sqrt{p}$, can we almost surely cover $\mathbb{Z}/p\mathbb{Z}$ with $100\sqrt{p}$ translat...

L1
Combinatorics
68
3
GREEN-082
Open

Hamming Ball Covering Growth

Let $r$ be fixed and let $H(r)$ be the Hamming ball of radius $r$ in $\mathbb{F}_2^n$. Let $f(r)$ be the smallest constant such that there exist infin...

L2
Combinatorics
66
3
GREEN-097
Open

N-Queens Problem Asymptotics

In how many ways (asymptotically) $Q(n)$ may $n$ non-attacking queens be placed on an $n \times n$ chessboard?...

L1
Combinatorics
145
9
COMB-003
Open

The Union-Closed Sets Conjecture

For any finite family of finite sets that is closed under taking unions, must there exist an element that belongs to at least half of the sets?...

L4
Combinatorics
334
28
COMB-004
Open

Singmaster's Conjecture

Does there exist a finite upper bound on how many times a number (other than 1) can appear in Pascal's triangle?...

L3
Combinatorics
298
26
COMB-010
Open

The Cap Set Problem

What is the maximum size of a cap set in $\mathbb{F}_3^n$?...

L4
Combinatorics
523
40
COMB-012
Open

The Sunflower Conjecture

Does every family of at least $c^k k!$ sets of size $k$ contain a sunflower of size 3, for some absolute constant $c$?...

L5
Combinatorics
612
48
PreviousNext