Unsolved Problems
Showing 1-11 of 11 problems
Category
Problem Set
Status
Ulam's Sequence
Define Ulam's sequence $1, 2, 3, 4, 6, 8, 11, 13, 16, 18, 26, 28, 36, \ldots$ where $u_1 = 1, u_2 = 2$, and $u_{n+1}$ is the smallest number uniquely ...
Large Sieve and Quadratic Sets
Suppose that a large sieve process leaves a set of quadratic size. Is that set quadratic?...
Small Sieve Maximal Sets
Suppose that a small sieve process leaves a set of maximal size. What is the structure of that set?...
Sumsets Containing Composites
Suppose $A, B \subset \{1, \dots, N\}$ both have size $N^{0.49}$. Does $A + B$ contain a composite number?...
Covering Squares with Sumsets
Suppose $A + A$ contains the first $n$ squares. Is $|A| \geq n^{1-o(1)}$?...
Primes with p-2 Having Odd Omega
Do there exist infinitely many primes $p$ for which $p-2$ has an odd number of prime factors (counting multiplicity)?...
Difference Sets Containing Squares
Is there $c > 0$ such that whenever $A \subset [N]$ has size $N^{1-c}$, the difference set $A - A$ contains a nonzero square?...
Equidistribution of Integer Multiples
Let $c > 0$ and let $A$ be a set of $n$ distinct integers. Does there exist $\theta$ such that no interval of length $\frac{1}{n}$ in $\mathbb{R}/\mat...
Covering by Residue Classes
Let $N$ be large. For each prime $p$ with $N^{0.51} \leq p < 2N^{0.51}$, pick a residue $a(p) \in \mathbb{Z}/p\mathbb{Z}$. Is $\#\{n \in [N] : n \equi...
Sieving by Many Small Primes
Sieve $[N]$ by removing half the residue classes mod $p_i$, for primes $2 \leq p_1 < p_2 < \dots < p_{1000} < N^{9/10}$. Does the remaining set have s...
Residue Class Multiple Coverage
Can we pick residue classes $a_p \pmod p$, one for each prime $p \leq N$, such that every integer $\leq N$ lies in at least 10 of them?...